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Polynomial Harmonic Decompositions

Nicolae Anghel

Abstract

For real polynomials in two indeterminates a classical polynomial
harmonic decomposition (cf. (1) below) is extended from square-norm
divisors to conic ones. The main result is then applied to obtain a full
polynomial harmonic decomposition, and to solve a Dirichlet problem
with polynomial boundary data.

Harmonic functions are of utmost importance in analysis, geometry, and
mathematical physics [1]. Even at their most basic occurrence, as polynomial
harmonic functions, they produce surprisingly useful results. One of them is
the following classical harmonic decomposition: In Rn, n ≥ 2, with coordi-
nates x = (x1, x2, . . . , xn), any homogeneous real polynomial of degree m ≥ 0,
pm(x), is uniquely decomposable as

pm(x) = hm(x) + |x|2pm−2(x), (1)

where hm(x) is a homogeneous harmonic
(∑

j
∂2hm

∂x2
j

= 0
)

real polynomial of

degree m, |x|2 =
∑

j x
2
j , and pm−2(x) is a homogeneous polynomial of degree

m − 2 (possibly 0). As customary, here and in what follows the concepts of
polynomial and polynomial function will be identified and used interchange-
ably.

There are vast generalizations of the decomposition (1), where the har-
monic polynomials are replaced by polynomial solutions to constant coefficient
partial differential operators, and |x|2 by more general polynomials, like the
symbols of those operators [4, 5]. Key applications of the decomposition (1)
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are the determination of the spectrum of the Laplace operator on the Eu-
clidean sphere Sn−1 [6], or the simple (without a need for Poisson integrals)
resolution of the Dirichlet problem with polynomial boundary data on the
closed unit ball B in Rn [2]. These applications and sheer curiosity made us
wonder which hyperquadric functions

ω(x) =
∑
j≤k

cjkxjxk +
∑
j

cjxj + c, cjk, cj , c ∈ R (2)

could replace |x|2 in the decomposition (1), of course at the unavoidable cost
of losing homogeneity. In fact, in the language of [4] we will attempt to
characterize all Fischer pairs of type (ω(x), |x|2), with respect to the space of
real polynomials in Rn.

A superficial thought made us believe this would be the case precisely

when ∆ω :=
∑

j
∂2ω
∂x2

j
6= 0, or equivalently

∑
j cjj 6= 0. Furthermore, one way

of possibly seeing this could be via an use of the classification theorem for
hyperquadrics ({x ∈ Rn| ω(x) = 0}) up to rigid motions of Rn, which leave
the Laplace operator ∆ invariant.

We were wrong on both accounts and while this is still work in progress we
want to report here an answer in the case n = 2, which we deem interesting
enough to warrant this write-up. The main result of this note is the following

(Harmonic ω-Decomposition) Theorem. Let ω(x) = ax21 + bx1x2 + cx22 +
dx1 + ex2 + f , a, b, c, d, e, f ∈ R, a2 + b2 + c2 6= 0 be a conic function on R2.
The following two statements are equivalent:

(i) For any m ≥ 0 and any real polynomial of degree m in x = (x1, x2),
pm(x), there are unique real polynomials hm(x) and pm−2(x) of degrees
respectively m and m− 2, hm(x) harmonic, i.e., ∆hm = 0, such that

pm(x) = hm(x) + ω(x)pm−2(x). (3)

(ii) Either b2 − 4ac ≤ 0 or if b2 − 4ac > 0 then
a+ c+ i

√
b2 − 4ac

a+ c− i
√
b2 − 4ac

is not a

complex root of unity.

For instance, according to the Theorem the unique decomposition (3) exists
for ω(x) = x21 − x2, or for ω(x) = x21 + x22 + 3x1x2, and it does not exist for
ω(x) = x21 + x22 + 4x1x2.

Couple of Lemmas, valid also in Rn, will precede the proof of the Theorem.

Lemma 1. An unique decomposition of type (3) for polynomials on Rn exists,
for ω(x) given by (2), if and only if there is no non-trivial harmonic polynomial
of type ω(x)q(x), for q(x) some (non-trivial ) polynomial.
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Proof. The necessity is obvious, on the account of the uniqueness for the ω-
decomposition (3). For the sufficiency fix an integer m ≥ 0 and let pm(x) be
a real polynomial of degree m. If ∆pm = 0 then the unique decomposition (3)
holds by hypothesis, with hm(x) = pm(x) and pm−2(x) = 0.

If ∆pm 6= 0, denote by P≤(m−2) the finite dimensional real vector space of
real polynomials in indeterminates x1, x2, . . . , xn of degree at most m− 2. By
hypothesis the linear map

P≤(m−2) 3 p 7→ ∆(ωp) ∈ P≤(m−2)

is injective, and therefore surjective by a dimensionality argument. Thus, since
∆pm ∈ P≤(m−2) there is pm−2 ∈ P≤(m−2) such that ∆(ωpm−2) = ∆pm, or
equivalently ∆(pm−ωpm−2) = 0. Setting hm(x) := pm(x)−ω(x)pm−2(x), we
have the existence of a decomposition of type (3). Its uniqueness follows again
by hypothesis.

Lemma 2. An unique decomposition of type (3) for polynomials on Rn ex-
ists for ω(x) =

∑
j≤k cjkxjxk +

∑
j cjxj + c if and only if one exists for its

homogeneous quadratic part ω̃(x) =
∑

j≤k cjkxjxk.

Proof. Via the contrapositive of Lemma 1 it suffices to show that there is a
non-trivial harmonic polynomial of type ω(x)q(x) if and only if there is one of
type ω̃(x)q̃(x).

Assume first that ω(x)q(x) is a harmonic polynomial for some non-trivial
polynomial q(x) of degree m ≥ 0. Then the homogeneous component of degree
m + 2 of ω(x)q(x) is ω̃(x)q̃(x), where q̃(x) is the non-trivial homogeneous
component of top degree m of q(x). Since ∆ preserves homogeneity while
lowering the degree by 2 it follows that ∆(ωq) = 0 implies ∆(ω̃q̃) = 0, i.e.,
ω̃(x)q̃(x) is a non-trivial harmonic polynomial.

Conversely, assume now that ω̃(x)q̃(x) is a harmonic polynomial for some
non-trivial polynomial q̃(x). We can choose q̃(x) such that it is homogeneous
and its degree m is the least possible. It follows that for any 0 ≤ k ≤ m − 1
the maps

P≤k 3 p 7→ ∆(ω̃p) ∈ P≤k (4)

are linear isomorphisms. We will provide a non-trivial polynomial q(x) of
degree m such that ∆(ωq) = 0 in the following way: In the homogeneous
decomposition of q(x), q(x) =

∑m
j=0 qm−j(x), qm−j(x) homogeneous poly-

nomial of degree m − j, we set first qm(x) := q̃(x). Write now ω(x) =
ω2(x)+ω1(x)+ω0(x), where ω2(x) := ω̃(x), ω1(x) :=

∑
j cjxj , and ω0(x) := c.

Then the homogeneous decomposition of ω(x)q(x) is

ωq = ω2qm + (ω2qm−1 + ω1qm) + (ω2qm−2 + ω1qm−1 + ω0qm) + · · ·+ ω0q0,
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while the homogeneous decomposition of ∆(ωq) is

∆(ωq) = ∆ (ω2qm−1 + ω1qm) + ∆ (ω2qm−2 + ω1qm−1 + ω0qm) + · · · . (5)

The linear isomorphisms (4) yield now recursively the homogeneous poly-
nomials qm−1(x), qm−2(x), . . . , q0(x), such that ∆(ω2qm−1) = −∆(ω1qm),
∆(ω2qm−2) = −∆ (ω1qm−1 + ω0qm), . . . , making the right-hand-side of (5)
vanish.

In preparation for proving the Harmonic ω-Decomposition Theorem we
specialize to the case n = 2 and extend the polynomial ring R[x1, x2] to its
complexification C[x1, x2]. There is an obvious conjugation operator C[x1, x2]
3 p 7→ p ∈ C[x1, x2] and then p ∈ C[x1, x2] belongs to R[x1, x2] if and only if
p = p. Notice that C[x1, x2] = C[z, z], where z = x1 + ix2 and z = x1 − ix2,
i =
√
−1. A homogeneous polynomial of degree m in C[x1, x2] is therefore

uniquely representable as

p(z, z) =

m∑
j=0

γjz
m−jzj , γj ∈ C, (6)

and it belongs to R[x1, x2] if and only if αm−j = αj for every j.

As an operator from R[x1, x2] into itself ∆ = ∂2

∂x2
1

+ ∂2

∂x2
2

extends by

complex linearity to C[z, z] according to the formula ∆ = 4 ∂2

∂z∂z , where
∂
∂z = 1

2

(
∂

∂x1
+ 1

i
∂

∂x2

)
and ∂

∂z = 1
2

(
∂

∂x1
− 1

i
∂

∂x2

)
. Consequently,

∆

 m∑
j=0

γjz
m−jzj

 = 4

m−1∑
j=1

j(m− j)γjzm−j−1zj−1. (7)

A polynomial p(z, z) ∈ C[z, z] will be called harmonic if ∂2p
∂z∂z = 0. A harmonic

polynomial h(x1, x2) ∈ R[x1, x2] is also harmonic in C[z, z], and conversely
if g(z, z) is harmonic then Re g := g+g

2 and Im g := g−g
2i are harmonic in

R[x1, x2].

Proof of the Harmonic ω-Decomposition Theorem. For x = (x1, x2) ∈ R2 let
ω̃(x) := ax21 + bx1x2 + cx22 ∈ R[x1, x2], where a, b, c ∈ R, a2 + b2 + c2 6= 0.
The representation of ω̃(x) in C[z, z] is then

ω̃(x) = ω̃(z, z) =
1

4

(
αz2 + βzz + αz2

)
, (8)

where α = (a − c) − bi and β = 2(a + c). In view of the two lemmas and
the above considerations it suffices to show that there is some non-trivial
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homogeneous complex polynomial p(z, z) ∈ C[z, z] such that ω̃(z, z)p(z, z) is

harmonic if and only if b2− 4ac > 0 and
a+ c+ i

√
b2 − 4ac

a+ c− i
√
b2 − 4ac

is a complex root

of unity.
Writing p(z, z) as in (6), for some non-negative integer m , we see that

ω̃(z, z)p(z, z)

=
1

4

 m∑
j=0

αγjz
m−j+2zj +

m∑
j=0

βγjz
m−j+1zj+1 +

m∑
j=0

αγjz
m−jzj+2

 ,

and then by (7)

∆ (ω̃p) (z, z)

=

m∑
j=1

j(m− j + 2)αγjz
m−j+1zj−1 +

m∑
j=0

(j + 1)(m− j + 1)βγjz
m−jzj

+

m−1∑
j=0

(j + 2)(m− j)αγjzm−j−1zj+1 = (m+ 1)(αγ1 + βγ0)zm

+

m−1∑
j=1

(j + 1)(m− j + 1) (αγj+1 + βγj + αγj−1) zm−jzj

+ (m+ 1)(βγm + αγm−1)zm.

Therefore, ∆ (ω̃p) = 0 if and only if
αγ1 + βγ0 = 0

αγj+1 + βγj + αγj−1 = 0, j = 1, 2, . . . ,m− 1

βγm + αγm−1 = 0

(9)

Setting
γ−1 := 0 and γm+1 := 0, (10)

(9) can be written in the more compact form

αγj+1 + βγj + αγj−1 = 0, j = 0, 1, . . . ,m− 1,m. (11)

We are interested in necessary and sufficient conditions under which the system
(11) admits non-trivial solutions γj , subject to the constraints (10). Clearly,
for this to happen it is necessary that α 6= 0, in which case (11) becomes a
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constrained 2nd order linear recurrence. Its characteristic equation αr2 +βr+
α = 0 has complex solutions

r1,2 =
−β ±

√
β2 − 4αα

2α
=
−(a+ c)±

√
4ac− b2

(a− c)− ib
. (12)

Notice that r1,2 cannot vanish. As customary, any unconstrained solution of
(11) depends on two complex constants A and B and is given by

γj =

{
Arj1 +Brj2, if 4ac− b2 6= 0

Arj1 +Bjrj1, if 4ac− b2 = 0
j = −1, 0, 1, . . . ,m,m+ 1. (13)

If 4ac − b2 6= 0 then γ−1 = 0 gives B = −Ar2
r1

, so non-trivial solutions re-

quire A 6= 0. γm+1 = 0 then yields A

(
rm+2
1 − rm+2

2

r1

)
= 0, or equivalently(

r1
r2

)m+2

= 1. By (12) this is possible precisely when b2 − 4ac > 0 and

a+ c+ i
√
b2 − 4ac

a+ c− i
√
b2 − 4ac

is a complex (m+ 2)-root of unity.

If b2 − 4ac = 0 then γ−1 = 0 implies A = B and so γm+1 =
(m+ 2)A

rm+1
1

vanishes only if A = 0. Consequently, there are no non-trivial solutions in this
case. The proof of the Theorem is complete.

Of course, it would be of great interest to have an algorithmic way of
generating the harmonic part hm of pm in the ω-Decomposition (3) without
solving linear systems, just like the one found in [2] for the classical case ω(x) =
|x|2. However, such an algorithm is highly unlikely to exist for arbitrary ω.

We conclude this note with two applications of the Theorem: the first
one is a standard full harmonic ω-decomposition of real polynomials in two
variables, and the second one is a solution to Dirichlet problems on elliptic or
parabolic regions in R2, with polynomial boundary data.

(Full Harmonic ω-Decomposition) Theorem. Let a, b, c, d, e, f ∈ R, a2+
b2 + c2 6= 0 be such that either b2 − 4ac ≤ 0 or if b2 − 4ac > 0 then
a+ c+ i

√
b2 − 4ac

a+ c− i
√
b2 − 4ac

is not a complex root of unity. Then for any integer m ≥ 0

and for any real polynomial of degree m in x = (x1, x2), pm(x), there are
unique harmonic polynomials hm(x), hm−2(x), . . . , hm−2k(x), where k =

[
m
2

]
,

such that

pm(x) = hm(x) +ω(x)hm−2(x) +ω2(x)hm−4(x) + · · ·+ωk(x)hm−2k(x), (14)
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and where as above ω(x) = ax21 + bx1x2 + cx22 + dx1 + ex2 + f .

Proof. The Full Decomposition Theorem is obvious for m = 0 or 1, since
then pm(x) is harmonic. For m ≥ 2 it can be proved by induction on m, the
inductive step clearly being implementable by the ω-Decomposition (3). The
uniqueness of the harmonic polynomials in (14) follows from the uniqueness
of hm(x) and pm−2(x) in (3).

Recall now the Dirichlet problem in Rn: given a non-empty open subset
Ω ⊂ Rn, for any real-valued continuous function φ on its boundary ∂Ω, find
(an eventually unique) continuous function h on Ω, such that h is harmonic
(class C2, and satisfies ∆h = 0) on Ω and restricts to φ on ∂Ω. For certain
(possibly degenerate) conic regions in R2 with polynomial boundary data we
have the following

(Polynomial Dirichlet Problem) Theorem. Let ω(x) = ax21 + bx1x2 +
cx22 + dx1 + ex2 + f , a, b, c, d, e, f ∈ R, a2 + b2 + c2 6= 0 be a conic function on

R2 be such that either b2−4ac ≤ 0 or if b2−4ac > 0 then
a+ c+ i

√
b2 − 4ac

a+ c− i
√
b2 − 4ac

is not a complex root of unity, and such that Ω := {x ∈ R2| ω(x) < 0} is non-
empty. Then for any polynomial p ∈ R[x1, x2] there is a polynomial solution
to the Dirichlet problem on Ω = {x ∈ R2| ω(x) ≤ 0} which takes the value
p on ∂Ω = {x ∈ R2| ω(x) = 0}. The solution to this polynomial Dirichlet
problem may not be unique, however it is so if Ω is bounded.

Proof. The existence of a polynomial solution to this Dirichlet problem is
pretty simple, in view of the Harmonic ω-Decomposition Theorem. Indeed,
we have by (3), p(x) = h(x) + ω(x)q(x), with h(x) a harmonic polynomial of
the same degree as p(x), and q(x) some other polynomial. Since h(x) = p(x)
when ω(x) = 0, h is such a desired solution.

To see that the solution is not unique in general, let ω(x) = −x22. This
ω satisfies the hypotheses of the Theorem on Ω = {x ∈ R2| x2 6= 0} and
h1(x) = 0 and h2(x) = x2 are two distinct harmonic functions on Ω = R2

which restrict to the same value, 0, on ∂Ω = {x ∈ R2| x2 = 0}.
However, when Ω is bounded, or equivalently ∂Ω is an ellipse and Ω its

interior, if h̃ is another solution to the Dirichlet problem with boundary value
p, then h̃ − h is a harmonic function vanishing on ∂Ω, and by the maxi-
mum/minimum principle for harmonic functions [3], h̃ = h on Ω.

References

[1] S. Axler, P. Bourdon, W. Ramey, Harmonic Function Theory, Graduate
Texts Math. 137, Springer, New-York, 1992.



POLYNOMIAL HARMONIC DECOMPOSITIONS 32

[2] S. Axler, W. Ramey, Harmonic Polynomials and Dirichlet-Type Problems,
Proc. Amer. Math. Soc. 123 (1995) 3765-3773.

[3] W. Conley, Complex Analysis, Birkhäuser, Boston, 2004.
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